

1. GENERAL DESCRIPTION

The SENISENS Fast Magnetic Angle Sensor (FAMAS) SENA2Dx is an integrated magnetic field sensor which measures the in-plane orientation of a magnetic field, such as that of a permanent magnet attached on-axis to a rotating shaft. The integrated signal processing circuit works as a servo loop and tracks the magnetic position digitally. Thus, the angular position of the magnetic field, the direction of rotation and the angular velocity are available within less than $1~\mu s$.

There are three modes of operation available - fast, balanced and high resolution – to offer optimal performance for the required application.

Apart from its fast response the proprietary measurement principle of FAMAS offers unprecedented accuracy for all angles as well as multi-turn capability. In contrast to most common analog angle sensors FAMAS does not require any linearization of its signals for accurate sensing. The measurement has a highly linear response by default with a digital output. Therefore, no external ADC's or angle calculations are needed, saving cost and space, as well as time.

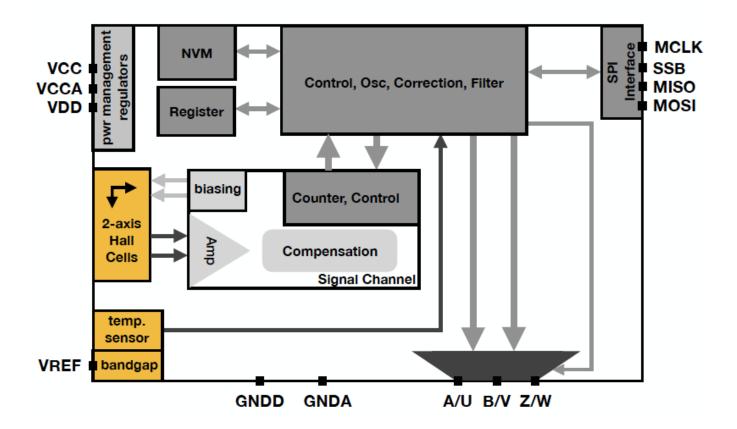
FAMAS is linear over a very high field range, offering low as well as very high magnetic field detection.

The FAMAS sensor offers 3 different signal interfaces: SPI, Quadrature interface with index and UVW. Using only one additional frequency converter for example, the digital output of FAMAs can be easily converted into a proportional analog signal if required without compromising its outstanding performance. This makes FAMAS ideally suited as a more robust and direct replacement for traditional analog angle sensors.

NOTE: For detailed information see the SENA2Dx datasheet.

TYPICAL APPLICATIONS:	FEATURES:
 Digital angular sensor, 0–360° Incremental angular encoder Fast measurement of the small rotational movements BLCD motor control Robotics (actuator control) Rotational speed control Steering-angle detection Industrial sewing machines Sawing machines 	 Proprietary Hall based measurement with direct angle-to-digital conversion Extremely stable and robust against external disturbance and positioning errors Direction, angle and rotation speed of the magnetic field, from DC up to 300 krpm Direct angle information, no external ADC or angle calculations required High angular resolution, i.e. 0.088° Fast response time, less than 1µs On-chip Offset, Sensitivity and Temperature correction Permanent configuration programming possible by inbuilt non-volatile memory Outputs: SPI, Quadrature interface with Index (ABZ) or AqB, UVW Commutation signals UVW configurable for 2, 4, 6 and 8 pole magnets Low magnetic field detection

www.senisens.com


3 +41 43 205 26 37

Ref.No.: SENA2Dx AN001 r2p3

Page 1/3

2. BLOCK DIAGRAM

3. SENSOR OUTPUT

SENA2Dx sensors provides the following three outputs:

- SPI, digital output
- Quadrature interface with Index (ABZ)
- UVW output

One powerful feature of this sensor is the direct digital information on the measured angle, so there is no need for an external analog-to-digital convertor (ADC), nor for any external electronic circuitry required for the calculation of the angle.

Some examples of the integration of SENA2Dx in a customer's data acquisition system are listed below:

www.senisens.com

3 +41 43 205 26 37

Ref.No.: SENA2Dx AN001 r2p3

Page 2/3

3.1 Analog Output - AqB to Frequency Converter

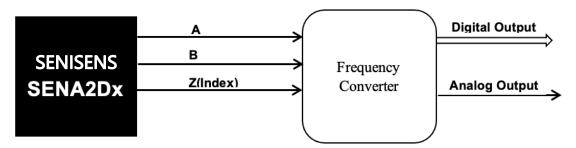


Figure 1: SENA2Dx AqB to Analog Conversion through a Frequency Converter to get the analog voltage proportional to the angle

The output pulses A and B from SENA2Dx are connected to a Frequency Converter, which converts the A and B quadrature output into a voltage that is proportional to the measured angle (i.e., to the encoder position).

3.2 Digital Output - AqB to Quadrature Counter

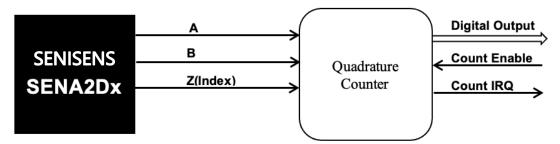


Figure 2: SENA2Dx AqB to Digital Conversion trough a Quadrature Counter to get the direction and count enable signals

The output pulses A and B from SENA2Dx are connected to the decoded input of a Quadrature Counter and is then converted to a non-quadrative, up/down, free running counter (no need for an Analog-to Digital Converter).

3.3 Digital Serial Interface - SPI to Microprocessor

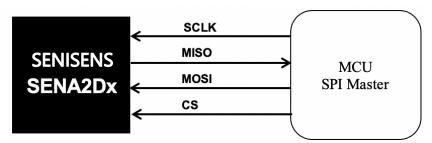


Figure 3: SENA2Dx Connection to a Microprocessor via SPI in a Master-Slave Configuration

www.senisens.com

3 +41 43 205 26 37

info@senisens.com

Ref.No.: SENA2Dx AN001 r2p3

Page 3/3