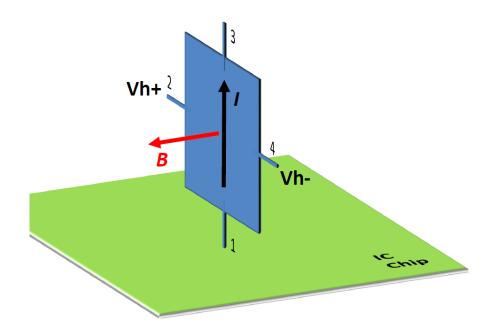


DESCRIPTION:


The **2VH01** is a vertical Hall device (patent pending) that can be incorporated as a cell into an integrated circuit designed for 0.35µm CMOS process.

The output voltage of the 2VH01 is proportional to a magnetic field component parallel with the chip surface.

The 2VH01 cell (or a cluster of such cells) can be readily integrated into a Hall sensor circuit, such as the spinning-current circuit.

KEY FEATURES:

- Sensitive to magnetic field parallel with the chip surface
- The sensitivity vector can be parallel with the X or Y axis of the chip, or tilted to 45°
- 0.35µm bulk CMOS technology
- Small cell size
- High signal-to-noise ratio
- Interchangeable biasing and sense contacts suitable for the spinning current circuit

Illustrating position, biasing, and response of the 2VH01. The active area of the Hall device is an n-type plate-like region, which is imbedded into the p-type substrate of the chip so that the planes of the Hall device and the chip are mutually orthogonal. Notation: 1, 2, 3, 4 - the current (input) and/or sense (output, Hall voltage) terminals; I - the biasing current; B - the magnetic field induction; Vh+, Vh- - the positive and negative terminals of the Hall voltage generator, respectively.

ABSOLUTE MAXIMUM RATINGS:

Parameter	Value	Remark
Supply voltage range	-0.5V to +6V	Any terminal (1, 2, 3 or 4) to substrate
Operating temperature range	-40°C to +125°C	

Web: <u>www.senis.ch</u>; E-mail: <u>transducers@senis.ch</u> Phone: +41 (44) 508 7029; Fax: +41 (43) 205 2638

CHARACTERISTICS:

Unless otherwise noted, the specifications apply for the biasing voltage Vb (between the current terminals) of 1V, with the "low" biasing terminal connected to the substrate, at the temperature 20°C.

Parameter	Value	Remark
Sensitivity vector	Parallel with surface	With respect to the chip surface
Dimensions of the cell	25μm x 40μm	Overall dimensions
Magnetic sensitive volume	10 x 25 x 5μm ³	1μm: Perpendicular to the surface
Resistance R _{in} , R _{out}	1.2kΩ ±10%	Between the terminals 1-2 or 3-4
Offset voltage V _{Off}	±2mV (typical)	at B = OT
Common output voltage V_{C}	0.45V	With respect to "low" biasing terminal
Magnetic sensitivity S_V	0.04V/VT ±3%	Bias-voltage-related magn. sensitivity
Magnetic sensitivity S_{I}	45V/AT ±10%	Bias-current-related magn. sensitivity
Noise voltage spectral density	See Figure 2	
Corner frequency of 1/f noise (f _c)	2kHz (typical)	Where 1/f noise equals thermal noise
NEMFsd*) at $f > 10 \times f_c$	120nT*V/√Hz / Vb	Vb: biasing voltage

^{*)} NEMFsd: Noise-equivalent magnetic field spectral density

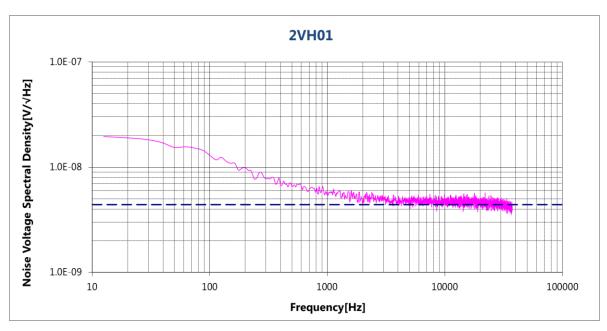


Figure 2. Nose voltage spectral density of the 2VH01 vs. frequency. The dashed line indicates the thermal noise floor of a $1.2k\Omega$ resistor.

Note: A cluster of N cells 2VH01 connected in parallel will have the following characteristics:

- Resistance R_{in} , R_{out} : $R_N = R_1/N$;
- Sensitivity $S_{VN} = S_{V1}$, $S_{IN} = S_{I1}/N$;
- Offset Voff_N = Voff₁ / \sqrt{N} ;
- Noise $Vn_N = Vn_1/\sqrt{N}$,

where the suffix 1 indicates a value of 2VH01, and N indicates a value of N parallel-connected 2VH01.

Rev.02 Jan. 28, 2015

Web: <u>www.senis.ch</u>; E-mail: <u>transducers@senis.ch</u> Phone: +41 (44) 508 7029; Fax: +41 (43) 205 2638 Page 2/2